Статистические методы анализа данных в решении практических задач (часть первая)
Опрос сотрудников, клиентов, потребителей, – это не просто сбор информации, а полноценное исследование. А целью всякого исследования является научно обоснованная интерпретация изученных фактов. Первичный материал необходимо обработать, а именно упорядочить и проанализировать.После опроса респондентов происходит анализ данных исследования. Это ключевой этап. Он представляет собой совокупность приемов и методов, направленных на то, чтобы проверить, насколько были верны предположения и гипотезы, а также ответить на заданные вопросы. Данный этап является, пожалуй, наиболее сложным с точки зрения интеллектуальных усилий и профессиональной квалификации, однако позволяет получить максимум полезной информации из собранных данных. Методы анализа данных многообразны. Выбор конкретного метода зависит, в первую очередь, от того, на какие вопросы мы хотим получить ответ. Можно выделить два класса процедур анализа:
- одномерные (дескриптивные) и
- многомерные.
Целью одномерного анализа является описание одной характеристики выборки в определенный момент времени. Рассмотрим более подробно.
Одномерные типы анализа данных
Количественные исследования
Дескриптивный анализ
Дескриптивные (или описательные) статистики являются базовым и наиболее общим методом анализа данных. Представьте, что вы проводите опрос с целью составления портрета потребителя товара. Респонденты указывают свой пол, возраст, семейное и профессиональное положение, потребительские предпочтения и т.д., а описательные статистики позволяют получить информацию, на основе которой будет строиться весь портрет. В дополнение к числовым характеристикам создаются разнообразные графики, помогающие визуально представить результаты опроса. Всё это многообразие вторичных данных объединяется понятием «дескриптивный анализ». Полученные в ходе исследования числовые данные наиболее часто представляются в итоговых отчетах в виде частотных таблиц. В таблицах могут быть представлены разные виды частот. Давайте рассмотрим на примере: Потенциальный спрос на товар
- Абсолютная частота показывает, сколько раз тот или иной ответ повторяется в выборке. Например, 23 человека купили бы предложенный товар стоимостью 5000 руб., 41 человек – стоимостью 4500 руб. и 56 человек – 4399 руб.
- Относительная частота показывает, какую долю данное значение составляет от всего объема выборки (23 человека – 19,2%, 41 – 34,2%, 56 – 46,6%).
- Кумулятивная или накопленная частота показывает долю элементов выборки, не превышающих определенное значение. Например, изменение процента респондентов, готовых приобрести тот или иной товар при уменьшении цены на него (19,2% респондентов готовы купить товар за 5000 руб., 53,4% – от 4500 до 5000 руб., и 100% – от 4399 до 5000 руб. ).
Наряду с частотами, дескриптивный анализ предполагает расчет различных описательных статистик. Соответствуя своему названию, они предоставляют основную информацию о полученных данных. Уточним, использование конкретной статистики зависит от того, в каких шкалах представлена исходная информация. Номинальная шкала используется для фиксации объектов, не имеющих ранжированного порядка (пол, место жительства, предпочитаемая марка и т.д.). Для подобного рода массива данных нельзя рассчитать каких-либо значимых статистических показателей, кроме моды – наиболее часто встречающегося значения переменной. Несколько лучше в плане анализа ситуация обстоит с порядковой шкалой. Здесь становится возможным, наряду с модой, расчет медианы – значения, разбивающего выборку на две равные части. Например, при наличии нескольких ценовых интервалов на товар (500-700 руб. руб., 700-900, 900-1100 руб.) медиана позволяет установить точную стоимость, дороже или дешевле которой потребители готовы приобретать или, наоборот, отказаться от покупки. Наиболее богатыми на все возможные статистики являются количественные шкалы, которые представляют собой ряды числовых значений, имеющих равные интервалы между собой и поддающихся измерению. Примерами подобных шкал могут служить уровень дохода, возраст, время, отводимое на покупки и т.д. В данном случае становятся доступными следующие информационные меры: среднее, размах, стандартное отклонение, стандартная ошибка среднего. Конечно, язык цифр является довольно «сухим» и для многих весьма непонятным. По этой причине дескриптивный анализ дополняется визуализацией данных путем построения различных диаграмм и графиков, как, например: гистограммы, линейные, круговые или точечные диаграммы.
Таблицы сопряженности и корреляции
Таблицы сопряженности – это средство представления распределения двух переменных, предназначенное для исследования связи между ними. Таблицы сопряженности можно рассматривать как частный тип дескриптивного анализа. В них также является возможным представление информации в виде абсолютных и относительных частот, графическая визуализация в виде гистограмм или точечных диаграмм. Наиболее эффективно таблицы сопряженности проявляют себя в определении наличия взаимосвязи между номинальными переменными (например, между полом и фактом потребления какого-либо продукта). В общем виде таблица сопряженности выглядит так. Зависимость между полом и пользованием страховыми услугами
На основе представленных в таблице данных и можно делать выводы о наличии/отсутствии взаимосвязи между исследуемыми переменными. Для более точного выявления наличия связи между переменными используют разные статистические критерии. Наиболее часто применяются такие, как:
- критерий Хи-квадрат (χ2);
- коэффициент сопряженности;
- критерий лямбда;
- коэффициент R Спирмена;
- критерий корреляции Пирсона и др.
Правильный выбор критерия является решающим шагом для получения корректных результатов. Поэтому, если перед вами стоит задача проведения статистического анализа и интерпретация его результатов, но вы не чувствуете уверенности – лучше обратиться к специалистам сервиса Анкетолог, чтобы не получить неправильные выводы, не приближающие к решению проблемы.
По вопросам расчета индексов:
E-mail: manager@anketolo
Телефон: +7 (383) 203-49-99
Продолжение статьи “Статистические методы анализа данных для решения практических задач”: часть вторая и часть третья.